Nonparametric analysis of covariance for censored data
Yunling Du
Biometrika, 2003, vol. 90, issue 2, 269-287
Abstract:
The fully nonparametric model for nonlinear analysis of covariance, proposed in Akritas et al. (2000), is considered in the context of censored observations. Under this model, the distributions for each factor level combination and covariate value are not restricted to comply to any parametric or semiparametric model. The data can be continuous or ordinal categorical. The possibility of different shapes of covariate effect in different factor level combinations is also allowed. This generality is useful whenever modelling assumptions such as additive risks, proportional hazards or proportional odds appear suspect. Test statistics are obtained for the nonparametric hypotheses of no main effect and of no interaction effect which adjusts for the presence of a covariate. They are quadratic forms based on averages over the covariate values of Beran estimators of the conditional distribution of the survival time given each covariate value. The derivation of the asymptotic &khgr;-super-2 distribution of the test statistics uses a recently-obtained asymptotic representation of the Beran estimator as average of independent random variables. A real-data set is analysed and results of simulation studies are reported. Copyright Biometrika Trust 2003, Oxford University Press.
Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (1)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:90:y:2003:i:2:p:269-287
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().