EconPapers    
Economics at your fingertips  
 

Prepivoting by weighted bootstrap iteration

Stephen M. S. Lee

Biometrika, 2003, vol. 90, issue 2, 393-410

Abstract: Prepivoting by conventional bootstrap iteration is known to yield a progressively more accurate pivot in certain problems, and has important application in the construction of confidence limits and estimation of null distributions. We investigate the theoretical effects of weighted bootstrap iteration on prepivoting and show that each weighted bootstrap iteration, with weights chosen carefully but empirically, is asymptotically equivalent to two consecutive conventional bootstrap iterations. In terms of reducing the order of error, prepivoting can therefore be carried out much more efficiently if based on weighted bootstrap iterations. This is shown for a variety of problem settings, including the smooth function model, M-estimation and the regression context. A numerical illustration is provided, demonstrating the potential practical usefulness of weighted prepivoting. Copyright Biometrika Trust 2003, Oxford University Press.

Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (5)

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:90:y:2003:i:2:p:393-410

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:90:y:2003:i:2:p:393-410