Weighted chi-squared tests for partial common principal component subspaces
James R. Schott
Biometrika, 2003, vol. 90, issue 2, 411-421
Abstract:
We consider tests of the null hypothesis that g covariance matrices have a partial common principal component subspace of dimension s. Our approach uses a dimensionality matrix which has its rank equal to s when the hypothesis holds. The test can then be based on a statistic computed from the eigenvalues of an estimate of this dimensionality matrix. The asymptotic distribution of this statistic is that of a linear combination of independent one-degree-of-freedom chi-squared random variables. Simulation results indicate that this test yields significance levels that come closer to the nominal level than do those of a previously proposed method. The procedure is also extended to a test that g correlation matrices have a partial common principal component subspace. Copyright Biometrika Trust 2003, Oxford University Press.
Date: 2003
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:90:y:2003:i:2:p:411-421
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().