Using logistic regression procedures for estimating receiver operating characteristic curves
Jing Qin
Biometrika, 2003, vol. 90, issue 3, 585-596
Abstract:
Estimation of a receiver operating characteristic, ROC, curve is usually based either on a fully parametric model such as a normal model or on a fully nonparametric model. In this paper, we explore a semiparametric approach by assuming a density ratio model for disease and disease-free densities. This model has a natural connection with the logistic regression model. The proposed semiparametric approach is more robust than a fully parametric approach and is more efficient than a fully nonparametric approach. Two real examples demonstrate that the ROC curve estimated by our semiparametric method is much smoother than that estimated by the nonparametric method. Copyright Biometrika Trust 2003, Oxford University Press.
Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (14)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:90:y:2003:i:3:p:585-596
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().