Bayesian inference for Markov processes with diffusion and discrete components
P. G. Blackwell
Biometrika, 2003, vol. 90, issue 3, 613-627
Abstract:
Data arising in certain radio-tracking experiments consist of both a continuous spatial component and a discrete component related to behaviour. This leads naturally to stochastic models with a state space which is a product of continuous and discrete components. We consider a class of such models in continuous time, which can be thought of as diffusions in random environments. They are related to switching diffusion or hidden Markov models, but observations are made on both components at discrete time points, so that neither component is completely 'hidden'. We describe and illustrate an approach to fully Bayesian inference for these general models. The algorithm used is a hybrid Markov chain Monte Carlo method. The diffusion parameters, the environment parameters and the sample path of the environment process itself are updated separately, in sequence, and the individual steps are a mixture of Gibbs and random walk Metropolis--Hastings types. Some implementation and model checking issues are discussed, and an example using data arising from a radio-tracking experiment is described. Copyright Biometrika Trust 2003, Oxford University Press.
Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (12)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:90:y:2003:i:3:p:613-627
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().