Matching conditional and marginal shapes in binary random intercept models using a bridge distribution function
Zengri Wang
Biometrika, 2003, vol. 90, issue 4, 765-775
Abstract:
Random effects logistic regression models are often used to model clustered binary response data. Regression parameters in these models have a conditional, subject-specific interpretation in that they quantify regression effects for each cluster. Very often, the logistic functional shape conditional on the random effects does not carry over to the marginal scale. Thus, parameters in these models usually do not have an explicit marginal, population-averaged interpretation. We study a bridge distribution function for the random effect in the random intercept logistic regression model. Under this distributional assumption, the marginal functional shape is still of logistic form, and thus regression parameters have an explicit marginal interpretation. The main advantage of this approach is that likelihood inference can be obtained for either marginal or conditional regression inference within a single model framework. The generality of the results and some properties of the bridge distribution functions are discussed. An example is used for illustration. Copyright Biometrika Trust 2003, Oxford University Press.
Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (21)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:90:y:2003:i:4:p:765-775
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().