Exponential functionals and means of neutral-to-the-right priors
Ilenia Epifani
Biometrika, 2003, vol. 90, issue 4, 791-808
Abstract:
The mean of a random distribution chosen from a neutral-to-the-right prior can be represented as the exponential functional of an increasing additive process. This fact is exploited in order to give sufficient conditions for the existence of the mean of a neutral-to-the-right prior and for the absolute continuity of its probability distribution. Moreover, expressions for its moments, of any order, are provided. For illustrative purposes we consider a generalisation of the neutral-to-the-right prior based on the gamma process and the beta-Stacy process. Finally, by resorting to the maximum entropy algorithm, we obtain an approximation to the probability density function of the mean of a neutral-to-the-right prior. The arguments are easily extended to examine means of posterior quantities. The numerical results obtained are compared to those yielded by the application of some well-established simulation algorithms. Copyright Biometrika Trust 2003, Oxford University Press.
Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (7)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:90:y:2003:i:4:p:791-808
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().