EconPapers    
Economics at your fingertips  
 

Conditional likelihood inference under complex ascertainment using data augmentation

David Clayton

Biometrika, 2003, vol. 90, issue 4, 976-981

Abstract: In many applications, particularly in genetics, samples are drawn under complex ascertainment rules. For example, families may only be selected for study if two or more siblings have trait values exceeding some threshold. The correct likelihood for inference in such situations involves the probabilities of ascertainment, and these are frequently intractable. A consistent, but not fully efficient, method of analysis of such studies is proposed. The main idea is to augment the data with additional pseudo-observations simulated under the ascertainment scheme, and to analyse using a conditional likelihood for discrimination between true observations and pseudo-observations. Ascertainment probabilities cancel in this likelihood. The method is illustrated with a simple example involving left-truncated failure times. Copyright Biometrika Trust 2003, Oxford University Press.

Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (4)

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:90:y:2003:i:4:p:976-981

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:90:y:2003:i:4:p:976-981