On identification of multi-factor models with correlated residuals
Michel Grzebyk
Biometrika, 2004, vol. 91, issue 1, 141-151
Abstract:
We specify some conditions for the identification of a multi-factor model with correlated residuals, uncorrelated factors and zero restrictions in the factor loadings. These conditions are derived from the results of Stanghellini (1997) and Vicard (2000) which deal with single-factor models with zero restrictions in the concentration matrix. Like these authors, we make use of the complementary graph of residuals and the conditions build on the role of odd cycles in this graph. However, in contrast to these authors, we consider the case where the conditional dependencies of the residuals are expressed in terms of a covariance matrix rather than its inverse, the concentration matrix. We first derive the corresponding condition for identification of single-factor models with structural zeros in the covariance matrix of the residuals. This is extended to the case where some factor loadings are constrained to be zero. We use these conditions to obtain a sufficient and a necessary condition for identification of multi-factor models. Copyright Biometrika Trust 2004, Oxford University Press.
Date: 2004
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:91:y:2004:i:1:p:141-151
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().