Nonparametric inference for stochastic linear hypotheses: Application to high-dimensional data
Jeanne Kowalski
Biometrika, 2004, vol. 91, issue 2, 393-408
Abstract:
The Mann--Whitney--Wilcoxon rank sum test is limited to comparison of two groups with univariate responses. In this paper, we introduce a class of stochastic linear hypotheses that addresses these limitations within a nonparametric setting. We formulate hypotheses for simultaneous comparisons of several, multivariate response groups, without modelling the response distributions. Inference is developed based on U-statistics theory and an exchangeability assumption. The latter condition is required to identify testable hypotheses for high-dimensional response vectors, such as those arising in genomic and psychosocial research. The methodology is illustrated with two real-data applications. Copyright Biometrika Trust 2004, Oxford University Press.
Date: 2004
References: Add references at CitEc
Citations: View citations in EconPapers (3)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:91:y:2004:i:2:p:393-408
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().