Efficient importance sampling for events of moderate deviations with applications
Cheng- Der Fuh
Biometrika, 2004, vol. 91, issue 2, 471-490
Abstract:
We propose a method for finding the alternative distribution in importance sampling. The alternative distribution is optimal in the sense that the asymptotic variance is minimised for estimating tail probabilities of asymptotically normal statistics. Our contribution to importance sampling is three-fold. To begin with, we obtain an explicit expression for the mean of the optimal alternative distribution and the expression motivates a recursive approximation algorithm. Secondly, a new multi-dimensional exponential tilting formula is presented. Lastly, a conservative estimator of the variance is given to facilitate a quick comparison among different stratified sampling schemes in conjunction with importance sampling. Several numerical examples illustrating the efficacy of the proposed method are also included. These results indicate that the proposed method is considerably more efficient than the method based on large deviations theory and the efficiency gain is more significant in higher dimensions. Copyright Biometrika Trust 2004, Oxford University Press.
Date: 2004
References: Add references at CitEc
Citations: View citations in EconPapers (6)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:91:y:2004:i:2:p:471-490
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().