Efficient recursions for general factorisable models
R. Reeves
Biometrika, 2004, vol. 91, issue 3, 751-757
Abstract:
Let n S-valued categorical variables be jointly distributed according to a distribution known only up to an unknown normalising constant. For an unnormalised joint likelihood expressible as a product of factors, we give an algebraic recursion which can be used for computing the normalising constant and other summations. A saving in computation is achieved when each factor contains a lagged subset of the components combining in the joint distribution, with maximum computational efficiency as the subsets attain their minimum size. If each subset contains at most r+1 of the n components in the joint distribution, we term this a lag-r model, whose normalising constant can be computed using a forward recursion in O(S-super-r+1) computations, as opposed to O(S-super-n) for the direct computation. We show how a lag-r model represents a Markov random field and allows a neighbourhood structure to be related to the unnormalised joint likelihood. We illustrate the method by showing how the normalising constant of the Ising or autologistic model can be computed. Copyright Biometrika Trust 2004, Oxford University Press.
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:91:y:2004:i:3:p:751-757
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().