EconPapers    
Economics at your fingertips  
 

Locally efficient semiparametric estimators for functional measurement error models

Anastasios A. Tsiatis and Yanyuan Ma

Biometrika, 2004, vol. 91, issue 4, 835-848

Abstract: A class of semiparametric estimators are proposed in the general setting of functional measurement error models. The estimators follow from estimating equations that are based on the semiparametric efficient score derived under a possibly incorrect distributional assumption for the unobserved 'measured with error' covariates. It is shown that such estimators are consistent and asymptotically normal even with misspecification and are efficient if computed under the truth. The methods are demonstrated with a simulation study of a quadratic logistic regression model with measurement error. Copyright 2004, Oxford University Press.

Date: 2004
References: Add references at CitEc
Citations: View citations in EconPapers (20)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/91.4.835 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:91:y:2004:i:4:p:835-848

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:91:y:2004:i:4:p:835-848