'Analytic' wavelet thresholding
Sofia C. Olhede and
Andrew T. Walden
Biometrika, 2004, vol. 91, issue 4, 955-973
Abstract:
We introduce so-called analytic stationary wavelet transform thresholding where, using the discrete Hilbert transform, we create a complex-valued 'analytic' vector from which an amplitude vector is defined. Thresholding of a real-valued wavelet coefficient at some transform level is carried out according to the corresponding value in this amplitude vector; relevant statistical results follow from properties of the discrete Hilbert transform. Analytic stationary wavelet transform thresholding is found to produce consistently a reduced mean squared error compared to using standard stationary wavelet transform, or 'cycle spinning', thresholding. For signals with extensive oscillations at some transform levels, this improvement is very marked. Furthermore we show that our thresholding test is invariant to phase shifts in the data, whereas, if complex wavelet filters are being used, the filters must be analytic or anti-analytic at each level of the wavelet transform. Copyright 2004, Oxford University Press.
Date: 2004
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/91.4.955 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:91:y:2004:i:4:p:955-973
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().