EconPapers    
Economics at your fingertips  
 

Theory for penalised spline regression

Peter Hall and J. D. Opsomer

Biometrika, 2005, vol. 92, issue 1, 105-118

Abstract: Penalised spline regression is a popular new approach to smoothing, but its theoretical properties are not yet well understood. In this paper, mean squared error expressions and consistency results are derived by using a white-noise model representation for the estimator. The effect of the penalty on the bias and variance of the estimator is discussed, both for general splines and for the case of polynomial splines. The penalised spline regression estimator is shown to achieve the optimal nonparametric convergence rateestablished by Stone (1982). Copyright 2005, Oxford University Press.

Date: 2005
References: Add references at CitEc
Citations: View citations in EconPapers (28)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/92.1.105 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:92:y:2005:i:1:p:105-118

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:92:y:2005:i:1:p:105-118