EconPapers    
Economics at your fingertips  
 

Discrete-transform approach to deconvolution problems

Peter Hall and Peihua Qiu

Biometrika, 2005, vol. 92, issue 1, 135-148

Abstract: If Fourier series are used as the basis for inference in deconvolution problems, the effects of the errors factorise out in a way that is easily exploited empirically. This property is the consequence of elementary addition formulae for sine and cosine functions, and is not readily available when one is using methods based on other orthogonal series or on continuous Fourier transforms. It allows relatively simple estimators to be constructed, founded on the addition of finite series rather than on integration. The performance of these methods can be particularly effective when edge effects are involved, since cosine series estimators are quite resistant to boundary problems. In this context we point to the advantages of trigonometric-series methods for density deconvolution; they have better mean squared error performance when edge effects are involved, they are particularly easy to code, and they admit a simple approach to empirical choice of smoothing parameter, in which a version of thresholding, familiar in wavelet-based inference, is used in place of conventional smoothing. Applications to other deconvolution problems are briefly discussed. Copyright 2005, Oxford University Press.

Date: 2005
References: Add references at CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/92.1.135 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:92:y:2005:i:1:p:135-148

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:92:y:2005:i:1:p:135-148