Adaptive two-stage test procedures to find the best treatment in clinical trials
Wolfgang Bischoff and
Frank Miller
Biometrika, 2005, vol. 92, issue 1, 197-212
Abstract:
A main objective in clinical trials is to find the best treatment in a given finite class of competing treatments and then to show superiority of this treatment against a control treatment. The traditional procedure estimates the best treatment in a first trial. Then in an independent second trial superiority of this treatment, estimated as best in the first trial, is to be shown against the control treatment by a size α test. In this paper we investigate these two trials of this traditional procedure as a two-stage test procedure. Additionally we introduce competing two-stage group-sequential test procedures. Then we derive formulae for the expected number of patients. These formulae depend on unknown parameters. When we have a prior for the unknown parameters we can determine the two-stage test procedure of size α and power β that is optimal, in that it needs a minimal number of observations. The results are illustrated by a numerical example, which indicates the superiority of the group-sequential procedures. Copyright 2005, Oxford University Press.
Date: 2005
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/92.1.197 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:92:y:2005:i:1:p:197-212
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().