Local polynomial regression analysis of clustered data
Kani Chen and
Zhezhen Jin
Biometrika, 2005, vol. 92, issue 1, 59-74
Abstract:
This paper proposes a classical weighted least squares type of local polynomial smoothing for the analysis of clustered data, with the key idea of using generalised inverses of correlation matrices. The estimator has a simple closed-form expression. Simplicity is achieved also for nonparametric generalised linear models with arbitrary link function via a transformation. Our approach can be characterised by 'local observations with local variances', which yields intuitively correct results in the sense that correct/incorrect specification of within-cluster correlation has respective positive/negative effects. The approach is a natural extension of classical local polynomial smoothing. Consequently, existing theory can be largely carried over and important issues such as bandwidth selection can be tackled in the classical fashion. Moreover, the approach can handle various types of covariate, such as cluster-level, subject-level or partially cluster-level. Numerical studies support the theoretical results. The method is illustrated with a real example on luteinising hormone levels in cows. Copyright 2005, Oxford University Press.
Date: 2005
References: Add references at CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/92.1.59 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:92:y:2005:i:1:p:59-74
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().