Marginal likelihood, conditional likelihood and empirical likelihood: Connections and applications
Jing Qin and
Biao Zhang
Biometrika, 2005, vol. 92, issue 2, 251-270
Abstract:
Marginal likelihood and conditional likelihood are often used for eliminating nuisance parameters. For a parametric model, it is well known that the full likelihood can be decomposed into the product of a conditional likelihood and a marginal likelihood. This property is less transparent in a nonparametric or semiparametric likelihood setting. In this paper we show that this nice parametric likelihood property can be carried over to the empirical likelihood world. We discuss applications in case-control studies, genetical linkage analysis, genetical quantitative traits analysis, tuberculosis infection data and unordered-paired data, all of which can be treated as semiparametric finite mixture models. We consider the estimation problem in detail in the simplest case of unordered-paired data where we can only observe the minimum and maximum values of two random variables; the identities of the minimum and maximum values are lost. The profile empirical likelihood approach is used for maximum semiparametric likelihood estimation. We present some large-sample results along with a simulation study. Copyright 2005, Oxford University Press.
Date: 2005
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/92.2.251 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:92:y:2005:i:2:p:251-270
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().