Direction estimation in single-index regressions
Xiangrong Yin and
R. Dennis Cook
Biometrika, 2005, vol. 92, issue 2, 371-384
Abstract:
We propose a general dimension-reduction method that combines the ideas of likelihood, correlation, inverse regression and information theory. We do not require that the dependence be confined to particular conditional moments, nor do we place restrictions on the predictors or on the regression that are necessary for methods like ordinary least squares and sliced-inverse regression. Although we focus on single-index regressions, the underlying idea is applicable more generally. Illustrative examples are presented. Copyright 2005, Oxford University Press.
Date: 2005
References: Add references at CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/92.2.371 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:92:y:2005:i:2:p:371-384
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().