Semiparametric maximum likelihood estimation exploiting gene-environment independence in case-control studies
Nilanjan Chatterjee and
Raymond J. Carroll
Biometrika, 2005, vol. 92, issue 2, 399-418
Abstract:
We consider the problem of maximum-likelihood estimation in case-control studies of gene-environment associations with disease when genetic and environmental exposures can be assumed to be independent in the underlying population. Traditional logistic regression analysis may not be efficient in this setting. We study the semiparametric maximum likelihood estimates of logistic regression parameters that exploit the gene-environment independence assumption and leave the distribution of the environmental exposures to be nonparametric. We use a profile-likelihood technique to derive a simple algorithm for obtaining the estimator and we study the asymptotic theory. The results are extended to situations where genetic and environmental factors are independent conditional on some other factors. Simulation studies investigate small-sample properties. The method is illustrated using data from a case-control study designed to investigate the interplay of BRCA1/2 mutations and oral contraceptive use in the aetiology of ovarian cancer. Copyright 2005, Oxford University Press.
Date: 2005
References: Add references at CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/92.2.399 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:92:y:2005:i:2:p:399-418
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().