EconPapers    
Economics at your fingertips  
 

Mean estimating equation approach to analysing cluster-correlated data with nonignorable cluster sizes

E. Benhin, J. N. K. Rao and A. J. Scott

Biometrika, 2005, vol. 92, issue 2, 435-450

Abstract: Most methods for analysing cluster-correlated biological data implicitly assume the ignorability of cluster sizes. When this assumption fails, the resulting inferences may be asymptotically invalid. Hoffman et al. (2001) proposed a simple but computationally intensive method, based on a large number of within-cluster resamples and associated separate estimating equations, that leads to asymptotically valid inferences whether the cluster sizes are ignorable or not. We study a simple method, based on a single inverse cluster size-weighted estimating equation, that avoids resampling and yet leads to asymptotically valid inferences. Simulation results are presented to assess the performance of the proposed method. We also propose Wald tests for ignorability of cluster sizes. Copyright 2005, Oxford University Press.

Date: 2005
References: Add references at CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/92.2.435 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:92:y:2005:i:2:p:435-450

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:92:y:2005:i:2:p:435-450