EconPapers    
Economics at your fingertips  
 

Generalised minimum aberration construction results for symmetrical orthogonal arrays

Neil A. Butler

Biometrika, 2005, vol. 92, issue 2, 485-491

Abstract: Generalised minimum aberration is a recently-established design criterion for the whole class of orthogonal arrays and fractional factorial designs. The criterion is, as its name suggests, a generalisation of minimum aberration for regular designs and of minimum G-sub-2-aberration for twolevel designs. The aim of the criterion is to find designs which minimise in a certain sense the aliasing between main effects and interactions. In this paper, theoretical results are developed for finding symmetrical orthogonal arrays with generalised minimum aberration for more than two factor levels. Copyright 2005, Oxford University Press.

Date: 2005
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/92.2.485 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:92:y:2005:i:2:p:485-491

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:92:y:2005:i:2:p:485-491