The Stein–James estimator for short- and long-memory Gaussian processes
Masanobu Taniguchi and
Junichi Hirukawa
Biometrika, 2005, vol. 92, issue 3, 737-746
Abstract:
We investigate the mean squared error of the Stein--James estimator for the mean when the observations are generated from a Gaussian vector stationary process with dimension greater than two. First, assuming that the process is short-memory, we evaluate the mean squared error, and compare it with that for the sample mean. Then a sufficient condition for the Stein--James estimator to improve upon the sample mean is given in terms of the spectral density matrix around the origin. We repeat the analysis for Gaussian vector long-memory processes. Numerical examples clearly illuminate the Stein--James phenomenon for dependent samples. The results have the potential to improve the usual trend estimator in time series regression models. Copyright 2005, Oxford University Press.
Date: 2005
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/92.3.737 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:92:y:2005:i:3:p:737-746
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().