Nonparametric maximum likelihood estimation of the structural mean of a sample of curves
Daniel Gervini and
Theo Gasser
Biometrika, 2005, vol. 92, issue 4, 801-820
Abstract:
A random sample of curves can be usually thought of as noisy realisations of a compound stochastic process X(t) = Z{W(t)}, where Z(t) produces random amplitude variation and W(t) produces random dynamic or phase variation. In most applications it is more important to estimate the so-called structural mean μ(t) = E{Z(t)} than the crosssectional mean E{X(t)}, but this estimation problem is difficult because the process Z(t) is not directly observable. In this paper we propose a nonparametric maximum likelihood estimator of μ(t). This estimator is shown to be √n-consistent and asymptotically normal under the assumed model and robust to model misspecification. Simulations and a realdata example show that the proposed estimator is competitive with landmark registration, often considered the benchmark, and has the advantage of avoiding time-consuming and often infeasible individual landmark identification. Copyright 2005, Oxford University Press.
Date: 2005
References: Add references at CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/92.4.801 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:92:y:2005:i:4:p:801-820
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().