First-order intrinsic autoregressions and the de Wijs process
Julian Besag and
Debashis Mondal
Biometrika, 2005, vol. 92, issue 4, 909-920
Abstract:
We discuss intrinsic autoregressions for a first-order neighbourhood on a two-dimensional rectangular lattice and give an exact formula for the variogram that extends known results to the asymmetric case. We obtain a corresponding asymptotic expansion that is more accurate and more general than previous ones and use this to derive the de Wijs variogram under appropriate averaging, a result that can be interpreted as a two-dimensional spatial analogue of Brownian motion obtained as the limit of a random walk in one dimension. This provides a bridge between geostatistics, where the de Wijs process was once the most popular formulation, and Markov random fields, and also explains why statistical analysis using intrinsic autoregressions is usually robust to changes of scale. We briefly describe corresponding calculations in the frequency domain, including limiting results for higher-order autoregressions. The paper closes with some practical considerations, including applications to irregularly-spaced data. Copyright 2005, Oxford University Press.
Date: 2005
References: Add references at CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/92.4.909 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:92:y:2005:i:4:p:909-920
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().