Semiparametric transformation models for the case-cohort study
Wenbin Lu and
Anastasios A. Tsiatis
Biometrika, 2006, vol. 93, issue 1, 207-214
Abstract:
A general class of semiparametric transformation models is studied for analysing survival data from the case-cohort design, which was introduced by Prentice (1986). Weighted estimating equations are proposed for simultaneous estimation of the regression parameters and the transformation function. It is shown that the resulting regression estimators are asymptotically normal, with variance-covariance matrix that has a closed form and can be consistently estimated by the usual plug-in method. Simulation studies show that the proposed approach is appropriate for practical use. An application to a case-cohort dataset from the Atherosclerosis Risk in Communities study is also given to illustrate the methodology. Copyright 2006, Oxford University Press.
Date: 2006
References: Add references at CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/93.1.207 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:93:y:2006:i:1:p:207-214
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().