Efficient Bayes factor estimation from the reversible jump output
Francesco Bartolucci,
Luisa Scaccia and
Antonietta Mira
Biometrika, 2006, vol. 93, issue 1, 41-52
Abstract:
We propose a class of estimators of the Bayes factor which is based on an extension of the bridge sampling identity of Meng & Wong (1996) and makes use of the output of the reversible jump algorithm of Green (1995). Within this class we give the optimal estimator and also a suboptimal one which may be simply computed on the basis of the acceptance probabilities used within the reversible jump algorithm for jumping between models. The proposed estimators are very easily computed and lead to a substantial gain of efficiency in estimating the Bayes factor over the standard estimator based on the reversible jump output. This is illustrated through a series of Monte Carlo simulations involving a linear and a logistic regression model. Copyright 2006, Oxford University Press.
Date: 2006
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/93.1.41 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:93:y:2006:i:1:p:41-52
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().