EconPapers    
Economics at your fingertips  
 

Linear life expectancy regression with censored data

Y. Q. Chen and Seu Cheng ()

Biometrika, 2006, vol. 93, issue 2, 303-313

Abstract: In the statistical literature, life expectancy is usually characterised by the mean residual life function. Regression models are thus needed to study the association between the mean residual life functions and their covariates. In this paper, we consider a linear mean residual life model and develop inference procedures in the presence of potential censoring. The new model and inference procedures are applied to the Stanford heart transplant data. Semiparametric efficiency calculations and information bounds are also considered. Copyright 2006, Oxford University Press.

Date: 2006
References: Add references at CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/93.2.303 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:93:y:2006:i:2:p:303-313

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:93:y:2006:i:2:p:303-313