Estimating the quality-of-life-adjusted gap time distribution of successive events subject to censoring
Adin-Cristian Andrei and
Susan Murray
Biometrika, 2006, vol. 93, issue 2, 343-355
Abstract:
When treatment effects are studied in the context of successive or recurrent life events, separate analyses of the quality-of-life scores and of the inter-event, gap, times might lead to possibly contradictory conclusions. In an attempt to reconcile this, we propose a unitary and more comprehensive nonparametric analysis that combines the two separate analyses by introducing the quality-of-life-adjusted gap time concept. Inverse probability of censoring estimators of the quality-of-life-adjusted gap time joint and conditional distributions are proposed and are shown to be consistent and asymptotically normal. Simulations performed in a variety of scenarios indicate that the joint and conditional quality-of-life-adjusted gap time distribution estimators are virtually unbiased, with properly estimated standard errors and asymptotic normality features. An example from the International Breast Cancer Study Group Trial V illustrates the use of the proposed estimators. Copyright 2006, Oxford University Press.
Date: 2006
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/93.2.343 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:93:y:2006:i:2:p:343-355
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().