Structured multicategory support vector machines with analysis of variance decomposition
Yoonkyung Lee,
Yuwon Kim,
Sangjun Lee and
Ja-Yong Koo
Biometrika, 2006, vol. 93, issue 3, 555-571
Abstract:
The support vector machine has been a popular choice of classification method for many applications in machine learning. While it often outperforms other methods in terms of classification accuracy, the implicit nature of its solution renders the support vector machine less attractive in providing insights into the relationship between covariates and classes. Use of structured kernels can remedy the drawback. Borrowing the flexible model-building idea of functional analysis of variance decomposition, we consider multicategory support vector machines with analysis of variance kernels in this paper. An additional penalty is imposed on the sum of weights of functional subspaces, which encourages a sparse representation of the solution. Incorporation of the additional penalty enhances the interpretability of a resulting classifier with often improved accuracy. The proposed method is demonstrated through simulation studies and an application to real data. Copyright 2006, Oxford University Press.
Date: 2006
References: Add references at CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/93.3.555 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:93:y:2006:i:3:p:555-571
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().