On recovering a population covariance matrix in the presence of selection bias
Manabu Kuroki and
Zhihong Cai
Biometrika, 2006, vol. 93, issue 3, 601-611
Abstract:
This paper considers the problem of using observational data in the presence of selection bias to identify causal effects in the framework of linear structural equation models. We propose a criterion for testing whether or not observed statistical dependencies among variables are generated by conditioning on a common response variable. When the answer is affirmative, we further provide formulations for recovering the covariance matrix of the whole population from that of the selected population. The results of this paper provide guidance for reliable causal inference, based on the recovered covariance matrix obtained from the statistical information with selection bias. Copyright 2006, Oxford University Press.
Date: 2006
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/93.3.601 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:93:y:2006:i:3:p:601-611
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().