Efficient estimation of semiparametric transformation models for counting processes
Donglin Zeng and
D. Y. Lin
Biometrika, 2006, vol. 93, issue 3, 627-640
Abstract:
A class of semiparametric transformation models is proposed to characterise the effects of possibly time-varying covariates on the intensity functions of counting processes. The class includes the proportional intensity model and linear transformation models as special cases. Nonparametric maximum likelihood estimators are developed for the regression parameters and cumulative intensity functions of these models based on censored data. The estimators are shown to be consistent and asymptotically normal. The limiting variances for the estimators of the regression parameters achieve the semi-parametric efficient bounds and can be consistently estimated. The limiting variances for the estimators of smooth functionals of the cumulative intensity function can also be consistently estimated. Simulation studies reveal that the proposed inference procedures perform well in practical settings. Two medical studies are provided. Copyright 2006, Oxford University Press.
Date: 2006
References: Add references at CitEc
Citations: View citations in EconPapers (50)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/93.3.627 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:93:y:2006:i:3:p:627-640
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().