Censored linear regression for case-cohort studies
Bin Nan,
Menggang Yu and
John D. Kalbfleisch
Biometrika, 2006, vol. 93, issue 4, 747-762
Abstract:
Right-censored data from a classical case-cohort design and a stratified case-cohort design are considered. In the classical case-cohort design the subcohort is obtained as a simple random sample of the entire cohort, whereas in the stratified design this subcohort is elected by independent Bernoulli sampling with arbitrary selection probabilities. For each design and under a linear regression model, methods for estimating the regression parameters are proposed and analysed. These methods are derived by modifying the linear ranks tests and estimating equations that arise from full-cohort data using methods that are similar to the pseudolikelihood estimating equation that has been used in relative risk regression for these models. The estimators so obtained are shown to be consistent and asymptotically normal. Variance estimation and numerical illustrations are also provided. Copyright 2006, Oxford University Press.
Date: 2006
References: Add references at CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/93.4.747 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:93:y:2006:i:4:p:747-762
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().