Multi-level modelling under informative sampling
Danny Pfeffermann,
Fernando Antonio Da Silva Moura and
Pedro Luis Do Nascimento Silva
Biometrika, 2006, vol. 93, issue 4, 943-959
Abstract:
We consider a model-dependent approach for multi-level modelling that accounts for informative probability sampling of first- and lower-level population units. The proposed approach consists of first extracting the hierarchical model holding for the sample data given the selected sample, as a function of the corresponding population model and the first- and lower-level sample selection probabilities, and then fitting the resulting sample model using Bayesian methods. An important implication of the use of the model holding for the sample is that the sample selection probabilities feature in the analysis as additional data that possibly strengthen the estimators. A simulation experiment is carried out in order to study the performance of this approach and compare it to the use of 'design-based' methods. The simulation study indicates that both approaches perform in general equally well in terms of point estimation, but the model-dependent approach yields confidence/credibility intervals with better coverage properties. Another simulation study assesses the impact of misspecification of the models assumed for the sample selection probabilities. The use of maximum likelihood estimation is also considered. Copyright 2006, Oxford University Press.
Date: 2006
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/93.4.943 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:93:y:2006:i:4:p:943-959
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().