Constrained local likelihood estimators for semiparametric skew-normal distributions
Yanyuan Ma and
Jeffrey D. Hart
Biometrika, 2007, vol. 94, issue 1, 119-134
Abstract:
A local likelihood estimator for a nonparametric nuisance function is proposed in the context of semiparametric skew-normal distributions. Constraints imposed on such functions result in a nonparametric estimator with a different target function for maximization from classical local likelihood estimators. The optimal asymptotic semiparametric efficiency bound on parameters of interest is achieved by using this estimator in conjunction with an estimating equation formed by summing efficient scores. A generalized profile likelihood approach is also proposed. This method has the advantage of providing a unique estimate in cases where an estimating equation has multiple solutions. Our nonparametric estimator of the nuisance function leads to an estimator of the semiparametric skew-normal density. Both the estimating equation and profile likelihood approaches are applicable to more general skew-symmetric distributions. Copyright 2007, Oxford University Press.
Date: 2007
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asm020 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:94:y:2007:i:1:p:119-134
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().