Modelling the effects of partially observed covariates on Poisson process intensity
Stephen L. Rathbun,
Saul Shiffman and
Chad J. Gwaltney
Biometrika, 2007, vol. 94, issue 1, 153-165
Abstract:
We propose an estimating function for parameters in a model for Poisson process intensity when time- or space-varying covariates are observed for both the events of the process and at sample times or locations selected from a probability-based sampling design. We investigate the large-sample properties of the proposed estimator under increasing domain asymptotics, demonstrating that it is consistent and asymptotically normally distributed. We illustrate our approach using data from an ecological momentary assessment of smoking. Copyright 2007, Oxford University Press.
Date: 2007
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asm009 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:94:y:2007:i:1:p:153-165
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().