An asymptotic theory for model selection inference in general semiparametric problems
Gerda Claeskens and
Raymond J. Carroll
Biometrika, 2007, vol. 94, issue 2, 249-265
Abstract:
Hjort & Claeskens (2003) developed an asymptotic theory for model selection, model averaging and subsequent inference using likelihood methods in parametric models, along with associated confidence statements. In this article, we consider a semiparametric version of this problem, wherein the likelihood depends on parameters and an unknown function, and model selection/averaging is to be applied to the parametric parts of the model. We show that all the results of Hjort & Claeskens hold in the semiparametric context, if the Fisher information matrix for parametric models is replaced by the semiparametric information bound for semiparametric models, and if maximum likelihood estimators for parametric models are replaced by semiparametric efficient profile estimators. Our methods of proof employ Le Cam's contiguity lemmas, leading to transparent results. The results also describe the behaviour of semiparametric model estimators when the parametric component is misspecified, and also have implications for pointwise-consistent model selectors. Copyright 2007, Oxford University Press.
Date: 2007
References: Add references at CitEc
Citations: View citations in EconPapers (26)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asm034 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:94:y:2007:i:2:p:249-265
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().