EconPapers    
Economics at your fingertips  
 

Inference on fractal processes using multiresolution approximation

Kenneth Falconer and Carmen Fernández

Biometrika, 2007, vol. 94, issue 2, 313-334

Abstract: We consider Bayesian inference via Markov chain Monte Carlo for a variety of fractal Gaussian processes on the real line. These models have unknown parameters in the covariance matrix, requiring inversion of a new covariance matrix at each Markov chain Monte Carlo iteration. The processes have no suitable independence properties so this becomes computationally prohibitive. We surmount these difficulties by developing a computational algorithm for likelihood evaluation based on a 'multiresolution approximation' to the original process. The method is computationally very efficient and widely applicable, making likelihood-based inference feasible for large datasets. A simulation study indicates that this approach leads to accurate estimates for underlying parameters in fractal models, including fractional Brownian motion and fractional Gaussian noise, and functional parameters in the recently introduced multifractional Brownian motion. We apply the method to a variety of real datasets and illustrate its application to prediction and to model selection. Copyright 2007, Oxford University Press.

Date: 2007
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asm025 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:94:y:2007:i:2:p:313-334

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:94:y:2007:i:2:p:313-334