Pairwise dependence diagnostics for clustered failure-time data
David V. Glidden
Biometrika, 2007, vol. 94, issue 2, 371-385
Abstract:
Frailty and copula models specify a parametric dependence structure for multivariate failure-time data. Estimation of some joint quantities can be highly sensitive to the assumed parametric form, and hence model fit is an important issue. This paper lays out a general diagnostic framework for evaluating and selecting frailty and copula models. The approach is based on the cumulative sum of residuals that are calculated in bivariate time. The residuals reflect the difference between the observed and expected bivariate association structures. The proposed model-checking process is interpretable with a limiting distribution which can be approximated using the bootstrap. Simulations and a data example illustrate the practical application of the method. Copyright 2007, Oxford University Press.
Date: 2007
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asm024 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:94:y:2007:i:2:p:371-385
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().