EconPapers    
Economics at your fingertips  
 

Uncertainty in prior elicitations: a nonparametric approach

Jeremy E. Oakley and Anthony O'Hagan

Biometrika, 2007, vol. 94, issue 2, 427-441

Abstract: A key task in the elicitation of expert knowledge is to construct a distribution from the finite, and usually small, number of statements that have been elicited from the expert. These statements typically specify some quantiles or moments of the distribution. Such statements are not enough to identify the expert's probability distribution uniquely, and the usual approach is to fit some member of a convenient parametric family. There are two clear deficiencies in this solution. First, the expert's beliefs are forced to fit the parametric family. Secondly, no account is then taken of the many other possible distributions that might have fitted the elicited statements equally well. We present a nonparametric approach which tackles both of these deficiencies. We also consider the issue of the imprecision in the elicited probability judgements. Copyright 2007, Oxford University Press.

Date: 2007
References: Add references at CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asm031 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:94:y:2007:i:2:p:427-441

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:94:y:2007:i:2:p:427-441