Bayesian predictive information criterion for the evaluation of hierarchical Bayesian and empirical Bayes models
Tomohiro Ando
Biometrika, 2007, vol. 94, issue 2, 443-458
Abstract:
The problem of evaluating the goodness of the predictive distributions of hierarchical Bayesian and empirical Bayes models is investigated. A Bayesian predictive information criterion is proposed as an estimator of the posterior mean of the expected loglikelihood of the predictive distribution when the specified family of probability distributions does not contain the true distribution. The proposed criterion is developed by correcting the asymptotic bias of the posterior mean of the loglikelihood as an estimator of its expected loglikelihood. In the evaluation of hierarchical Bayesian models with random effects, regardless of our parametric focus, the proposed criterion considers the bias correction of the posterior mean of the marginal loglikelihood because it requires a consistent parameter estimator. The use of the bootstrap in model evaluation is also discussed. Copyright 2007, Oxford University Press.
Date: 2007
References: Add references at CitEc
Citations: View citations in EconPapers (31)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asm017 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:94:y:2007:i:2:p:443-458
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().