Integrated likelihood functions for non-Bayesian inference
Thomas A. Severini
Biometrika, 2007, vol. 94, issue 3, 529-542
Abstract:
Consider a model with parameter θ = (ψ, λ), where ψ is the parameter of interest, and let L(ψ, λ) denote the likelihood function. One approach to likelihood inference for ψ is to use an integrated likelihood function, in which λ is eliminated from L(ψ, λ) by integrating with respect to a density function π(λ|ψ). The goal of this paper is to consider the problem of selecting π(λ|ψ) so that the resulting integrated likelihood function is useful for non-Bayesian likelihood inference. The desirable properties of an integrated likelihood function are analyzed and these suggest that π(λ|ψ) should be chosen by finding a nuisance parameter ϕ that is unrelated to ψ and then taking the prior density for ϕ to be independent of ψ. Such an unrelated parameter is constructed and the resulting integrated likelihood is shown to be closely related to the modified profile likelihood. Copyright 2007, Oxford University Press.
Date: 2007
References: Add references at CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asm040 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:94:y:2007:i:3:p:529-542
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().