Recursive computing and simulation-free inference for general factorizable models
Nial Friel and
Håvard Rue
Biometrika, 2007, vol. 94, issue 3, 661-672
Abstract:
We illustrate how the recursive algorithm of Reeves & Pettitt (2004) for general factorizable models can be extended to allow exact sampling, maximization of distributions and computation of marginal distributions. All of the methods we describe apply to discrete-valued Markov random fields with nearest neighbour integrations defined on regular lattices; in particular we illustrate that exact inference can be performed for hidden autologistic models defined on moderately sized lattices. In this context we offer an extension of this methodology which allows approximate inference to be carried out for larger lattices without resorting to simulation techniques such as Markov chain Monte Carlo. In particular our work offers the basis for an automatic inference machine for such models. Copyright 2007, Oxford University Press.
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asm052 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:94:y:2007:i:3:p:661-672
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().