The high-dimension, low-sample-size geometric representation holds under mild conditions
Jeongyoun Ahn,
J. S. Marron,
Keith M. Muller and
Yueh-Yun Chi
Biometrika, 2007, vol. 94, issue 3, 760-766
Abstract:
High-dimension, low-small-sample size datasets have different geometrical properties from those of traditional low-dimensional data. In their asymptotic study regarding increasing dimensionality with a fixed sample size, Hall et al. (2005) showed that each data vector is approximately located on the vertices of a regular simplex in a high-dimensional space. A perhaps unappealing aspect of their result is the underlying assumption which requires the variables, viewed as a time series, to be almost independent. We establish an equivalent geometric representation under much milder conditions using asymptotic properties of sample covariance matrices. We discuss implications of the results, such as the use of principal component analysis in a high-dimensional space, extension to the case of nonindependent samples and also the binary classification problem. Copyright 2007, Oxford University Press.
Date: 2007
References: Add references at CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asm050 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:94:y:2007:i:3:p:760-766
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().