EconPapers    
Economics at your fingertips  
 

Monte Carlo Estimation for Nonlinear Non-Gaussian State Space Models

Borus Jungbacker and Siem Jan Koopman

Biometrika, 2007, vol. 94, issue 4, 827-839

Abstract: We develop a proposal or importance density for state space models with a nonlinear non-Gaussian observation vector y ∼ p(y¦θ) and an unobserved linear Gaussian signal vector θ ∼ p(θ). The proposal density is obtained from the Laplace approximation of the smoothing density p(θ¦y). We present efficient algorithms to calculate the mode of p(θ¦y) and to sample from the proposal density. The samples can be used for importance sampling and Markov chain Monte Carlo methods. The new results allow the application of these methods to state space models where the observation density p(y¦θ) is not log-concave. Additional results are presented that lead to computationally efficient implementations. We illustrate the methods for the stochastic volatility model with leverage. Copyright 2007, Oxford University Press.

Date: 2007
References: Add references at CitEc
Citations: View citations in EconPapers (26)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asm074 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:94:y:2007:i:4:p:827-839

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:94:y:2007:i:4:p:827-839