A Jackknife Variance Estimator for Unistage Stratified Samples with Unequal Probabilities
Yves G. Berger
Biometrika, 2007, vol. 94, issue 4, 953-964
Abstract:
Existing jackknife variance estimators used with sample surveys can seriously overestimate the true variance under unistage stratified sampling without replacement with unequal probabilities. A novel jackknife variance estimator is proposed which is as numerically simple as existing jackknife variance estimators. Under certain regularity conditions, the proposed variance estimator is consistent under stratified sampling without replacement with unequal probabilities. The high entropy regularity condition necessary for consistency is shown to hold for the Rao--Sampford design. An empirical study of three unequal probability sampling designs supports our findings. Copyright 2007, Oxford University Press.
Date: 2007
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asm072 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:94:y:2007:i:4:p:953-964
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().