Miscellanea Kernel-Type Density Estimation on the Unit Interval
M.C. Jones and
D.A. Henderson
Biometrika, 2007, vol. 94, issue 4, 977-984
Abstract:
We consider kernel-type methods for the estimation of a density on 0,1 which eschew explicit boundary correction. We propose using kernels that are symmetric in their two arguments; these kernels are conditional densities of bivariate copulas. We give asymptotic theory for the version of the new estimator using Gaussian copula kernels and report on simulation comparisons of it with the beta-kernel density estimator of Chen ([1]). We also provide automatic bandwidth selection in the form of 'rule-of-thumb' bandwidths for both estimators. As well as its competitive integrated squared error performance, advantages of the new approach include its greater range of possible values at 0 and 1, the fact that it is a bona fide density and that the individual kernels and resulting estimator are comprehensible in terms of a single simple picture. Copyright 2007, Oxford University Press.
Date: 2007
References: Add references at CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asm068 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:94:y:2007:i:4:p:977-984
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().