EconPapers    
Economics at your fingertips  
 

Multi-parameter automodels and their applications

Cécile Hardouin and Jian-Feng Yao

Biometrika, 2008, vol. 95, issue 2, 335-349

Abstract: Motivated by the modelling of non-Gaussian data or positively correlated data on a lattice, extensions of Besag's automodels to exponential families with multi-dimensional parameters have been proposed recently. We provide a multiple-parameter analogue of Besag's one-dimensional result that gives the necessary form of the exponential families for the Markov random field's conditional distributions. We propose estimation of parameters by maximum pseudolikelihood and give a proof of the consistency of the estimators for the multi-parameter automodel. The methodology is illustrated with examples, in particular the building of a cooperative system with beta conditional distributions. We also indicate future applications of these models to the analysis of mixed-state spatial data. Copyright 2008, Oxford University Press.

Date: 2008
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asn016 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:95:y:2008:i:2:p:335-349

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:95:y:2008:i:2:p:335-349