EconPapers    
Economics at your fingertips  
 

Nonparametric variance estimation in the analysis of microarray data: a measurement error approach

Raymond J. Carroll and Yuedong Wang

Biometrika, 2008, vol. 95, issue 2, 437-449

Abstract: We investigate the effects of measurement error on the estimation of nonparametric variance functions. We show that either ignoring measurement error or direct application of the simulation extrapolation, SIMEX, method leads to inconsistent estimators. Nevertheless, the direct SIMEX method can reduce bias relative to a naive estimator. We further propose a permutation SIMEX method that leads to consistent estimators in theory. The performance of both the SIMEX methods depends on approximations to the exact extrapolants. Simulations show that both the SIMEX methods perform better than ignoring measurement error. The methodology is illustrated using microarray data from colon cancer patients. Copyright 2008, Oxford University Press.

Date: 2008
References: Add references at CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asn017 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:95:y:2008:i:2:p:437-449

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:95:y:2008:i:2:p:437-449